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Some SOfUtiOnS of this problem are known for loading of the wedge on its 

sides or at its apex; for example, the cases shown in Fig, 1. However, 

each of these solutions is nonunique because the boundary conditions are 
specified only on the boundaries of the wedge, 
which are assumed to be infinite. The behavior 
of the stresses at infinity is not stipulated 
beforehand. 

Indeed, examine the upper portion of a 
wedge (Fig. 2) which is cut off by the segment 
AC, i.e. the triangle ABC, and assume that this 
section is subjected along AC to an srbitrary 
self-equilibrating load. and that the bound- 
aries BA and BC remain free. This gives rise in 

Fig. 1. the triangle to a state of stress that depends 
on the character of the load applied along the 

boundary AC. Superpose the state of stress obtained in this manner on 
the state that exists in one of the problems indicated above. The bound- 
ary conditions are then retained, but the state 
of stress varies depending on the loading along B 
the face AC. If the load is assumed to be arbi- 
trary, except for the restriction that its re- P 
sultant moment and load vector be equal to zero, 
then we obtain an infinite set of solutions for 
a given problem with given boundary conditions 
on BA and KC - as was to be proved. Hence it 
follows that for the complete solution of the c ~ 
wedge problem it is of interest to solve the Wi! iTiiQA 
problem of a triangle (Fig. 2) which has an 
arbitrary self-equilibrating load applied on Fig. 2. 
one face AC and has the remaining two faces BA 

and BC free. 
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1. In the present work the variational method of Castigliano is 

applied to the problem indicated. h”e represent the unknown stress tensor 

as the sum of two tensors 

x, = 8,” + Z&X,(m) ) Y, = Yy” + ,‘AmYy(m) 

X, = Xl,0 -I- ZA,,,X&@ (1) 

Here the tensor whose components are denoted by the index 0 is the 

basic tensor, which satisfies the differential equations of equilibrium 

and the boundary conditions of the problem 

(Fig. 2). The second terms in Formulas (1) 

comprise the correction tensor. This tensor 

likewise satisfies the equations of equi- 

librium but leaves the boundaries of the 

region ARC free of stress. It is required 

that each of the tensors being summed, with 

components XX(“), Yy(ll), Xy(‘), satisfy 

these two conditions. Then the presence of 

the arbitrary constants Am allows one to 

carry out the variation of the general 

tensor (1) that is necessary to form the 

variational equation of Castigliano 

6 \ TI’ds 2: \ (6S”U -t oYJ) O’s (4 
(? (S) 

In the present problem the surface forces 

X “, YV are given and therefore are not 

varied. Thus Equation (2) simplifies and 

leads to the theorem of minimum elastic 

energy 

W-8 ’ 
I 

II’ d: = u (3) 
(0) 

As a result of substituting Expression (1) 

x M Y 

9 x v P 

0 

Fig. 3~. 

Fig. 3b. 

into the function W and 

carrying out the integration, we obtain for the function Y on the left 

side of Equation (3) a quadratic function in the arbitrary constants Am. 

To determine these we arrive at a system of linear equations 

av / aA, == 0 (1/L z 1, “, . .) (.i) 

2. In the present problem it is convenient to use a skewed (contra- 

variant) coordinate system X, y (Fig. 3~) instead of rectangular coordi- 
nates. As the coordinate axes ive take the sides of the wedge RA and EC, 

with the angle p between them. Then the “skewed” contravariant components 
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of the stress tensor X,, Yy and Xy shown in Fib. 36 may be designated in 
the same way as in a rectangular coordinate system but with this differ- 
ence: the subscript does not denote the external normal to an area ele- 
ment that is parallel to one of the coordinate axes but rather denotes 
the direction of the other axis such that, for example, Xx denotes the 
projection (oblique angled) onto the x-axis of the entire stress acting 
on an area element with the “pseudo normal” x (i.e. onto an area element 
parallel to the y-axis). 

3. It is easy to show that in the skewed [oblique] coordinate system 
that has been adopted the equilibrium equations have the usual form 

(5) 

Likewise, the shear components Xy and Yx that 
we have introduced satisfy the conjugate relation 
Yx = Xy (these shear components differ from the 
usual shear stresses). 

The basic and correction stress tensors must 
satisfy the differential equations of equilibrium. 
This will be the case if each of them is obtained 
from an Airy stress function q( x, y) in accordance 

4. ‘Fle use the following considerations to construct the basic stress 
tensor. In the case of a rectangle (Fig. 4) with sides x = 0, y = 0, 
x = (I, y = c the correction stress tensor may be obtained in a rectan- 
gular coordinate system by means of the stress function 

Here the functions Pm(x) and P,(y) are so-called cosine-binomials 

The cosine-binomials satisfy the following boundary conditions 
Pi 

P’m (0) =I 0, P,’ (0) --- 0, p, (0) = 0, P,,’ (0) -. 0 

f’,,, (0) = 0, I’,,,’ (a) = ti, p,, (c) = 0, P,’ (c) .- (J 
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Systems of these functions are complete and closed. If we express the 

components of the stress tensor in formulas of the type (6) by means of 

the stress tensor (7), then we note. that as a 

consequence of the boundary properties of the 

cosine-binomials (9). the entire contour of the 

rectangle will be free of stresses. By this 

means we obtain the correction tensor for the 

rectangle. If a right triangle is now cut out 

of the rectangle by a diagonal (or by another 
C straight line), its legs will be free of stresses 

but there will be normal and tangential stresses 

that form a self-equilibrating load on the hypo- 

tenuse. The completeness of the function system 

(6) and the arbitrariness of the coefficients 

D A nn allow one to realize an extremely widewide 

class of functions by this means. 
Fig. 5. 

All that has been stated can be applied to 

the present problem of a scalene triangle. To do 

this, we extend the triangle (Fig. 5) to the parallelogram ABCD and use 

the stress function (‘7) in the skewed coordinate system that has been 

adopted. The contour of the parallelogram remains free of stresses in 

this process, while a self-equilibrated 

load of sufficient arbitrariness occurs on 

its diagonal AC. This means that the basic 

Fig. 6. 

tensor for the triangle is obtained as the correction tensor for the 

parallelogram. 
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In the application of the solution obtained, it is convenient to ex- 

press the equilibrated loads on the section AC in terms of a normal 

stress N and a shear stress T. We obtain the expressions for N and T in 

terms of the skewed components from the equations of equilibrium.of an 

infinitesimal triangular element (Fig. 6) 

N :; S& (X, sin2 r + Y, sin2 cf + 2X, sin u sin 7) 

TEL 
(10) 

sin (3 
[-- X, sin 7 co.7 r + Y, sin a cos a + X, (sin +I cos c1 - cos 7 sin a)] 

In the case of rectangular coordinate system (F = w/2, y = n/2 - a) 

these formulas coincide with the formulas for the “stresses on an oblique 

element” that are used in Strength of Materials. We write the equation 

for the section AC in the form (Fig. 5): 

x/a+?j./c=l (11) 

For the orientation of the triangle in Fig. 5 the segments a and c 

are negative. On the straight line AC the variable y must be considered 

as a function of x 

y=c(l-x/a) 

Corresponding to this, the arguments of the function Ps(y) and its 

2 
- ) = nfi- !?!z 
a a 

For n even For n odd 

p, (Y) = p, (4, 

P,’ (y) = - ; P’, (47 

I’,” (y) = $ P,” (x). 

P, (?/) -.= - P, (.r) 

P,’ (y) = : P,’ (2) 

P,” (y) = - $ P,,” (x) 

derivatives are transformed to 

nal/ A=nn I- 
c ( 

Summarizing the results, we have 

From this summary it follows that on the straight line AC the func- 

tion P,(Y). as considered on the segment C, passes over to the function 

Pn( x), as considered on the segment a. Hence the stresses .N and T on the 

section AC are expressible as a function of a single (skewed) coordinate 

x. To find these expressions it is necessary to obtain the components 

X *, Yy and Xy from the stress function (7) 
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and to transform P,(y) and its derivatives in accordance with (12). 

Omitting the corresponding calculations, we deduce the final expressions 

N and T (in obtaining these we have applied the law of sines to the tri- 

angle ABC). 

We have 

N = $$- 22 (---l)“4,, [Pm (4 P,, (41” (14) 

T=~{mta~Z; (-l)“&, IPm’ (x) p, WI’ - cot 722 (--lY&JP, (4 P, w} 
, 

Primes in the expressions in the square brackets denote derivatives 

with respect to the variable X. By the use of Expression (14), we evalu- 

ate the resultant load and moment of the’ forces applied along the section 

AC 

2 

s N (s) ds == 

n 

s iv (4 
0 0 0 

1 a 

\ 
sN (s) ds = --.?-. N (x) _dl = __ 

1 a 

sin a 311 a sin2 a 
0 

c 
XX (x) dx 

;, 
I 

s 
T (s) ds = \ T (x) _dr z __ 

1 n 
T (x) dx 

.i sin a sin a s 
0 0 0 

(151 

Substituting into the above from (14). we note that total derivatives 

stand under the integral sign. Hence, the integrations are performed 

without difficulty, and evaluation at the limits of integration and a 

consideration of the boundary properties of the cosine-binomials shows 

that all of the quantities (15) vanish and the force on the cross- 

section AC is self-equilibrating - as was established a priori. 

If the normal and tangential stresses NO(X) and 7”(x) on the section 

AC are given (their distribution is expressed as a function of X, as in 

(15)) they must be approximated by means of Formula (14). For example, 

this can be done by the method of minimum quadratic deviation, i.e. by 

requiring that the integral 
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take on a minimum value. Equating to zero the derivatives with respect 

to the parameters A,,, we obtain a system of linear equations for their 

determination 

-.iY-=, m--J, 1, :,... 

~‘%7l, n=O, 1, Z,... 

By this means the construction of the basic stress tensor is com- 

pleted. 

5. The basic tensor was constructed with the aid of the stress func- 

tion (7). In this process the sides BA and BC of the triangle turned out 

to be free of stress as a consequence of the boundary properties (9) of 

the cosine-binomials. To construct the correction tensor we affix to 

each term of the sum (7) an analogous factor that together with its de- 

rivative goes to z.ero on the straight line AC. For this purpose we in- 

troduce a new argument 

w-x/a+y/c (16) 

Because of the equation of the straight line AC (11). U) = 1 on AC, so, 

for example, the function 

p (10) = 1 - cos 2nw (17) 

satisfies the required conditions; in fact 

P (w) =o, tg = P’ (w) = 23% sin 2nz~: =_ 0 (18) 

We form the correction tensor with the aid of the stress function 

v’k = ’ (“) 22 c,,p,, tx) ‘,I (?/) (19) 

We write out the components of the stress tensor; for brevity we re- 

tain only a single summation sign; and in addition we omit the arguments 

of the functions Pm = Pm(x), Pn = Pn( y) and P = P( 10). 

We denote the derivatives of these functions by primes, so that we 

have 

Xx(“’ = ?!!? z ; P”ZC,,P,P, + 2 L P’BC,,P,P,’ -i_ PZC,,P,1’,” 
8Y” c 

yyW _ ‘“‘pk _ 1 
&I? a2 P”.x,,P,P,.7m 2 1 P’ZC,,P,‘P, ! PZC,,P,“P, 

a 
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These formulas give the correction tensor for the triangle, as can be 

verified immediately. The skewed components (20) vanish on the sides BA 

and EC. This follows from the boundary properties of the cosine-binomials 

(9). On the side AC we form the components (10). We note that Formula 

(20) simplifies considerably on the straight line AC. Here P = 0, P' = 0 

according to (17) and 

(20) and substituting 

(18). Retaining only the first terms of Formulas 

in Formulas (10). we obtain 

+ 
sin a cos a sinycosa-cosTsina 

al -- 

C P P 
W 

mn m 7t (21) 

Here the expressions in the square brackets vanish as a consequence 

of the law of sines and hence the stresses N and T are absent on the 

side AC for arbitrary values of the parameters Can, as was to be proved. 

6. The complete stress tensor of the given problem is obtained in 

accordance with (1) as the sum of the correction tensor (20) and the 

basic tensor. The latter is formed from the stress function (7) 

x,(O) -= 2 x A,,P, (2) P,” (y), Yy(0) = xx A,,P,” (2) P, (y) 

x 
II 
co) = -2 p&P,, (r) Pn’ (y) (22) 

The coefficients Ann are determined from the conditions for the 

approximation of the loads on the side AC, as was indicated in Section 4. 

In order to formulate the Castigliano variational equation, (2). it 

remains to construct the expression for the elastic energy W. If we 

refer the triangle being studied to a rectangular coordinate system, one 

of whose axes is parallel to the side AC, then the components N and T 

introduced above will enter in as components of the stress tensor (Fig. 

6a). In addition to these, it is necessary to add the component Nl (Fig. 

66). The latter is expressible in terms of the skew components Xx, Y,,, 

Xy from the conditions of equilibrium of the element KM, in analogy to 

(IO) 

NI = y&- (Xx ~09 T i- Y, COST u - XX, cos ~1 cos y) 

Adding this relation to (lo), we obtain a complete system of formulas 

for the transformation of the stress tensor. The expression for the 

elastic energy is 
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Applying Formulas (23) and (lo), we have, therefore, 

W= * 
2fi sin2 8 

{(X, + YJ - 2 (1 + v) sin2 pP,Y?, + /I cos fi X, (X, -+ YI/) $- 

+ 2 [I + v + (1 - v) cd [J] J&2} (25) 

In obtaining these results, we took into account that 

a+r=n--i% sin (a + r) = sin p, cos (a + r) = -- cos 8, x, = Y, 

The complete elastic energy of the triangle ABC is 

VZ s ’ TV dS (dS = dx dy sin p) (26) 

(b4) 

Inserting this expression into (26), we obtain 

V=__L_” 
2& sin ((i \s 

{(X, + YJ - KS,YV + LX,, (X, -!- YJ f MXu2) dzdy (27) 

is, 
K = 2 (1 + v) sin2 p, L -= 4 COJ p, ‘M zz 2 [ 1 + v -t_ (1 - v) cos* $1 (28) 

It is necessary to insert the components of the complete stress tensor 

into the integrand, using the Formulas (22) and (20) 

x, = x,(O) _;_ x,(k), y, = y,(O) + yp, x, = x,(O) + ‘y,,(k) (22, 

After the integration is carried out, the energy is obtained as a 

quadratic function of the unknown parameters C Inn’ By the usual means, we 

obtain for them the system 
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